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Abstract. The method for a numerical solution of the vibro-acoustic problem in a mobile screw
compressor is proposed and the in-house 3D finite element (FE) solver is developed. In order
to reduce the complexity of the problem, an attention is paid to the numerical solution of the
acoustic pressure field in the compressor cavity interacting with linear elastic compressor hous-
ing. Propagation of acoustic pressure in the cavity is mathematically described by Helmholtz
equation in the amplitude form and is induced by periodically varying surface velocity of the
compressor engine which can be determined experimentally. Numerical solution of Helmholtz
equation for acoustic pressure amplitude distibution inside the cavity with regards to prescribed
boundary conditions is performed using FE method on unstructured tetrahedral grid. For the
FE discretisation of the elastic compressor housing (modelled as a thin metal plate), a six-noded
thin flat shell triangular finite element with 18 DOF based on the Kirchhoff plate theory was
developed and implemented. The resulting strong coupled system of linear algebraic equations
describing the vibro-acoustic problem, i.e. the problem of interaction between the air inside
the cavity and the screw compressor housing, is solved numerically by well-known algorithms
implemented in Matlab. The developed 3D FE solver is verified against the approximate ana-
lytical solution of a specially designed benchmark test case. A construction of the benchmark
test analytical solution is also presented in the paper. The verified FE solver is applied to
vibro-acoustic problem of the simplified model of a screw compressor and its numerical results,
i.e. distribution of the acoustic pressure amplitudes in the cavity and absolute values of the
compressor housing deflection amplitudes, are discussed.
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1 INTRODUCTION

Considering customer requirements and the necessity to satisfy hygienic standards, the pro-
ducers of mobile screw compressors are compelled to minimise the emitted acoustic power and
the related noise. The ongoing research is focused on a proposal of a suitable and efficient
method and its implementation within an in-house computational software for the numerical
solution of the acoustic power radiation from screw compressors. The knowledge from compu-
tational results will be used to alter the mobile screw compressor design so that the total emitted
acoustic power is significantly decreased.

The solution of the above stated goals represents a complex problem. This paper is primarily
focused on the numerical solution for the vibro-acoustic problem of the simplified model of the
mobile screw-compressor. Main attention is paid to the acoustic pressure distribution [1, 2, 3, 4]
in the compressor cavity interacting with the linear elastic housing of the screw compressor. It
is assumed that the propagation of the acoustic pressure in the cavity is induced by periodically
varying surface velocity of the compressor engine, which is known a priori (e.g. experimentally
measured). Since the periodic function can be expressed in the form of Fourier series, the
problem can be solved for a single frequency value and with regards to linearity of the problem
the global solution can be derived using a superposition of the harmonic solutions. Based on this
assumption, the acoustic pressure p′(x, t) and the acoustic velocity v′(x, t) can be expressed in
the complex harmonic form p′(x, t) = p(x)eiωt and v′(x, t) = v(x)eiωt , respectively, where
ω is an angular frequency of compressor engine movement.

The method used for numerical solution of the vibro-acoustic problem is implemented into
a newly developed 3D finite element (FE) solver in Matlab. The FE solver is verified based
on the approximate analytical solution of a specially designed benchmark test case. Further-
more the FE solver is applied to the vibro-acoustic problem in the simplified model of a screw
compressor and its numerical results, i.e. distribution of the acoustic pressure amplitudes in the
cavity and absolute values of the compressor housing deflection amplitudes, are discussed.

2 PROBLEM FORMULATION

In the following, the computational domain is divided into two regions, the compressor cavity
Ω ⊂ R3 and the elastic compressor housing Ω̃ ⊂ R3, as
displayed in Figure 1. The cavity domain Ω is bounded by
the boundary ∂Ω = Γin ∪ Γout ∪ Γw ∪ Γt where Γin, Γout
and Γw denote the inlet, the outlet and the rigid walls of the
computational domain, respectively. The elastic housing
Ω̃ is bounded by boundary ∂Ω̃ = Γf ∪ Γu ∪ Γt where Γf
denotes the boundary with prescribed force loads and Γu
denotes the boundary with prescribed displacement field.
The interface between the two interacting domains, i.e. be-
tween the cavity Ω and the housing Ω̃, is denoted as Γt.

Figure 1: Computational domain
(Ω ∪ Ω̃) ⊂ R3.

In the cavity domain Ω, the distribution of acoustic pressure p(x) is described by the Helm-
holtz equation in the amplitude form [2, 4, 5]

k2p+ ∆p = 0 (1)

where k = ω
c

is the wave number, c is the speed of sound and ω is the angular frequency of the
engine motion. The weak solution of the Helmholtz equation is given as
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∫
Ω

k2ϕp dΩ−
∫
Ω

∇ϕ∇p dΩ +

∫
∂Ω

ϕ
∂p

∂n
dS = 0 (2)

where ϕ(x) is a well chosen test function. The momentum conservation law for the inviscid
fluid yields [2, 4]

∂p

∂n
= −iω%avn (3)

where i is the imaginary unit, %a is the air density and vn = n ·v is the normal component of the
acoustic velocity. The boundary condition vn = 0 is prescribed at the rigid wall boundary Γw
which yields

∫
Γw
ϕ ∂p
∂n

dS = −
∫

Γw
ϕ i ω%avn dS = 0. The normal velocity vn at the anechoic

outlet Γout is given as vn = p/(%ac) [1, 4] which yields
∫

Γout
ϕ ∂p
∂n

dS = −
∫

Γw
ϕ i ω

c
p dS. For

the inlet boundary Γin (i.e. the engine surface), the surface acoustic velocity vn is prescribed.
The interface Γt between the cavity and elastic housing holds

∫
Γt
ϕ ∂p
∂n

dS = −
∫

Γt
ϕ i ω%avn dS,

where the normal component of the acoustic velocity vn is an unknown velocity resulting from
the interaction between the acoustic environment in the cavity and the elastic housing of the
screw compressor.

The solution in the housing domain Ω̃ is based on the principle of virtual work (PVW) in the
following form ∫

Ω̃

δεTσ dΩ̃ = −
∫
Ω̃

%hδu
T ü dΩ̃ +

∫
Γt

p δuTn dS (4)

where ε = [εx, εy, εz, γyz, γxz, γxy]
T is the strain vector, σ = [σx, σy, σz, τyz, τxz, τxy]

T is the
stress vector, u = [u, v, w]T is the displacement vector and %h is the material density of the
housing. The surface integrals over the boundary Γu with prescribed zero displacements and Γf
with prescribed zero loads are equal to zero and are therefore omitted from Eq. 4.

3 FINITE ELEMENT METHOD DISCRETISATION

The finite element discretisation of the cavity domain Ω ⊂ R3 is carried out for an unstruc-
tured tetrahedral mesh, a sample tetrahedral element is shown in Figure 2(left). The amplitudes
of the acoustic pressure and the acoustic velocity are approximated linearly as

p(ξ, η, ζ) = Φ(ξ, η, ζ)XeS
−1
e pe , vν(ξ, η, ζ) = Φ(ξ, η, ζ)XeS

−1
e veν , ν ∈ {x, y, z} , (5)

where Φ(ξ, η, ζ) = [1, ξ, η, ζ], pe = [p1, p2, p3, p4]T is the vector of the acoustic pressure
amplitudes at each node of the finite element, Figure 2(left), and veν = [vν1, vν2, vν3, vν4]T ,
ν ∈ {x, y, z} is the vector of ν-th components of the acoustic velocity amplitudes at each node
of the finite element. The matrices Se and Xe are of the following form

Se =


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

 , Xe =


1 x1 y1 z1

0 x̄2 ȳ2 z̄2

0 x̄3 ȳ3 z̄3

0 x̄4 ȳ4 z̄4

 , (6)

while x̄i = xi − x1, ȳi = yi − y1, z̄i = zi − z1 for i = 2, 3, 4. The test function ϕ(ξ, η, ζ)
is approximated linearly, similarly to the amplitudes of the acoustic pressure and the acoustic
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Figure 2: Tetrahedral finite element Ωe (left) and normalised finite element Ω∗
e (right).

velocity. Substituting the approximations of the test function and of the acoustic pressure and
velocity amplitudes, Eq. 5, into the weak solution given by Eq. 2 and taking the boundary
integrals into consideration, we obtain a system of linear algebraic equations

ω2 |Je|
c2

S−Te XT
e A0XeS

−1
e︸ ︷︷ ︸

He

pe −
1

6|Je|
S−Te XT

e LTDT
e DeLXeS

−1
e︸ ︷︷ ︸

Ge

pe− (7)

−iω
|J∗ej|
c

S−Te XT
e ÃjXeS

−1
e︸ ︷︷ ︸

Fe

pe − iω%a |J∗ej|S−Te XT
e AjTeP︸ ︷︷ ︸

Ct
e

ve = iω%h |J∗ej|S−Te XT
e AjTeP︸ ︷︷ ︸

Cin
e

ve

where the matrices He and Ge are computed for all inner elements of the cavity domain Ω and
the matrices Fe, Ct

e and Cin
e are computed for the boundary elements at the boundaries Γout, Γt

and Γin, respectively, see Figure 1. The matrix L =
[
∂ΦT

∂ξ
, ∂ΦT

∂η
, ∂ΦT

∂ζ

]T
, the matrices De and

Te are of the following form

De =

 ȳ3z̄4 − z̄3ȳ4 z̄2ȳ4 − ȳ2z̄4 ȳ2z̄3 − z̄2ȳ3

z̄3x̄4 − x̄3z̄4 x̄2z̄4 − z̄2x̄4 z̄2x̄3 − x̄2z̄3

x̄3ȳ4 − ȳ3x̄4 ȳ2x̄4 − x̄2ȳ4 x̄2ȳ3 − ȳ2x̄3

, Te =

XeS
−1
e 0 0

0 XeS
−1
e 0

0 0 XeS
−1
e

, (8)

P is the permutation matrix that changes the sequence of the FE parameters, |Je| = | det Je|
where Je = x̄2ȳ3z̄4−x̄2ȳ4z̄3−x̄3ȳ2z̄4+x̄3ȳ4z̄2+x̄4ȳ2z̄3−x̄4ȳ3z̄2, |J∗ej| expresses twice the area of

each face of tetrahedral element, A0 =
1∫
0

1−ξ∫
0

1−ξ−η∫
0

ΦT (ξ, η, ζ)Φ(ξ, η, ζ) dζ dη dξ, the matrices

Ãj , j = 1, 2, 3, 4 are obtained from the integration of the product of base functions Φ(ξ, η, ζ)
over each face of the normalised tetrahedral element, Figure 2(right), and the matrices Aj ,
j = 1, 2, 3, 4 are obtained from the integration of the product of base function matrices for the
test function and for the normal velocity over each face of the normalised tetrahedral element.
After dividing Eq. 7 by the term (−iω) and after assembling the global matrices, the following
equation is obtained

1

%a

(
iωH +

1

iω
G + F

)
p + Ctvt = −Cinvin (9)

where vin is the vector of prescribed acoustic velocity amplitudes in the element nodes located
at the engine surface Γin and vt is the vector of unknown acoustic velocity amplitudes in the
element nodes located at the interface Γt.
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Figure 3: Six-noded thin flat shell triangular finite element Ω̃e before (left) and after (right) transformation.

For the FE discretisation of the housing domain Ω̃ ⊂ R3, a new 6-noded thin flat shell
triangular finite element with 18 degrees of freedom (DOF) was developed, see Figure 3(left).
This thin flat shell element is based on the Kirchhoff plate theory. Each corner node i, j and
k contains three displacements û0, v̂0, ŵ and two rotations ŵx̂, ŵŷ. The mid-side nodes l, m
and n store the information about normal derivatives of deflection ŵ(l)

n , ŵ(m)
n , ŵ(n)

n , where the
sense of rotation is determined by the sign of difference of numbers of the corresponding edge
corner nodes, see Figure 3(left). Applying the PVW Eq. 4, the equation of motion for a housing
element in the amplitude form is obtained with regards to a local coordinate system (x̂, ŷ, ẑ) of
the element as

iωMev
h
e + Bev

h
e +

1

iω
Kev

h
e + Qepe = 0 , (10)

where Me and Ke are the derived mass and stiffness matrices of the 6-noded thin flat shell
triangular finite element, Be = βKe is the proportional-damping matrix and vhe is the vector
of velocity amplitudes for the nodes located in the housing of the screw compressor. The ma-
trix Qe expresses the distribution of acoustic pressure amplitudes at the element Ω̃e. In order
to assembly the global matrices of mass M, stiffness K and proportional-damping B and the
global loading vector Qp, it is necessary to perform a transformation of all matrices and vec-
tors from the local coordinate system of the element (x̂, ŷ, ẑ) to the global coordinate system
(x, y, z). This way, two rotations ŵx̂, ŵŷ at each corner node i, j and k of the element are trans-
formed into three rotations ϕ, ϑ, ψ in the global coordinate system (x, y, z), while the rotations
in the mid-side nodes l, m and n are not transformed, i.e. ŵ(l)

n sgn(j − i) ≡ α(l)sgn(j − i),
ŵ

(m)
n sgn(k− j) ≡ α(m)sgn(k− j) and ŵ(n)

n sgn(k− i) ≡ α(n)sgn(k− i). The displacements û0,
v̂0, ŵ in the corner nodes i, j and k of the element are transformed into displacements u, v, w.
Using this transformation the obtained finite element has 21 DOF, as shown in Figure 3(right).
The resulting matrix equation describing the motion of the compressor’s housing in the global
coordinate system (x, y, z) yields

iωMvh + Bvh +
1

iω
Kvh + Qp = 0. (11)

The vector of acoustic velocity amplitudes vh can be divided into the subvector of velocity
amplitudes vt of compressor housing nodes at the interface Γt and into the subvector of velocity
amplitudes vΩ̃ of the other nodes inside the compressor housing domain Ω̃. Thus the coefficient
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matrices M, B, K can be divided into dedicated blocks and Eqs. (9), (11) can be rewritten as
1
%a

(
iωH+ 1

iω
G+F

)
0 Ct

0 iωM11+B11+ 1
iω

K11 iωM12+B12+ 1
iω

K12

Q iωM21+B21+ 1
iω

K21 iωM22+B22+ 1
iω

K22

·
p

vΩ̃

vt

=

−Cinvin

0

0

. (12)

The resulting strong coupled system of linear algebraic equations describing the vibro-acoustic
problem, i.e. the problem of interaction between the air inside the cavity Ω and the elastic
housing Ω̃, is solved numerically by well-known algorithms implemented in Matlab.

4 ANALYTICAL SOLUTION OF THE VIBRO-ACOUSTIC PROBLEM

In order to verify the method described above and to validate numerical results of the devel-
oped solver, a benchmark test case, which can be solved analytically, is suggested.

For simplicity, a rectangular cavity domain Ω ⊂ R2

with dimensions a× b is considered. The amplitude of
normal velocity vinn (x) = A0 sin 2πx

b
is prescribed at

the boundary Γin at the bottom of the cavity domain
and normal velocity vn = 0 is prescribed at the rigid
side walls Γw. At the top of the cavity, there is a simple
supported elastic beam Ω̃ ⊂ R1. Between the cavity
and the elastic beam, there is the interface boundary
Γt. The test setup is displayed in Figure 4. It is pos-
sible to find an approximate analytic solution of this
simple vibro-acoustic problem describing the distribu-
tion of the acoustic pressure amplitudes in domain Ω
and the deflection amplitudes in domain Ω̃.

Figure 4: Computational domains Ω ⊂ R2

and Ω̃ ⊂ R1 for the benchmark test case.

In this case, the weak solution of Eq. 1 for acoustic pressure amplitudes is

b∫
0

a∫
0

ω2

c2
ϕp dydx−

b∫
0

a∫
0

∇ϕ∇p dydx+

∫
Γin∪Γw∪Γt

ϕ
∂p

∂n
ds = 0 (13)

where ϕ = ϕ(x, y) are well-chosen test functions. It is assumed, that the solution for the
amplitude of the acoustic pressure can be approximated by finite series

p(x, y) =
N∑
k=1

N∑
l=1

(
akl sin

kπx

b
sin

lπy

a
+ bkl cos

kπx

b
sin

lπy

a
+ (14)

+ckl sin
kπx

b
cos

lπy

a
+ dkl cos

kπx

b
cos

lπy

a

)
where N is a number of considered harmonics in x and y directions. With regards to Eq. 3, the
following conditions are applied at the rigid wall boundary Γw

∂p

∂n
= −iω%avn = 0 =⇒ ∂p

∂x
(0, y) =

∂p

∂x
(b, y) = 0 . (15)

Thus the akl and ckl terms must be excluded from Eq. 14. The final form of the approximate
solution for the acoustic pressure amplitudes is then
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p(x, y) =
N∑
k=1

N∑
l=1

bkl cos
kπx

b
sin

lπy

a︸ ︷︷ ︸
ϕkl(x,y)

+dkl cos
kπx

b
cos

lπy

a︸ ︷︷ ︸
ϕ?
kl(x,y)

 . (16)

Due to the fact that Eq. 1 is of second order, the boundary conditions ∂p
∂n

are unstable and the
solution must be from a function space where

∫ b
0

∫ a
0
ϕkl(x, y) dydx =

∫ b
0

∫ a
0
ϕ?kl(x, y) dydx =

0, which are the functions with null mean values. The function in Eq. 16 meets this requirement.
The boundary integral over Γw from Eq. 13 is omitted with regards to Eq. 15. The velocity vn at
the boundary Γin is prescribed. Thus the term ∂p

∂n
is given according to Eq. 3. At the interface Γt,

the velocity vn is identical for both the cavity domain Ω and the elastic beam Ω̃. The amplitude
of the elastic beam deflection is assumed to be the harmonic function

w(x) =
N∑
j=1

αj sin
jπx

b
(17)

which yields the amplitude of velocity of the beam

v(x) = iω
N∑
j=1

αj sin
jπx

b
. (18)

In the following, the Galerkin method is applied. The estimated aproximate solution Eq. 16 is
substituted into Eq. 13 and the functions ϕkl(x, y), ϕ?kl(x, y) respectively, are applied as the test
functions. This yield to two systems of N2 algebraic equations for unknown coefficients bkl and
dkl, k, l = 1, . . . , N . Due to the fact that ϕkl(x, 0) = ϕkl(x, a) = 0 the first system holds

ω2

c2

b∫
0

a∫
0

ϕkl(x, y)p(x, y) dydx−
b∫

0

a∫
0

∇ϕkl(x, y)∇p(x, y) dydx = 0 . (19)

The second system is given as

ω2

c2

b∫
0

a∫
0

ϕ?kl(x, y)p(x, y) dydx−
b∫

0

a∫
0

∇ϕ?kl(x, y)∇p(x, y) dydx+ (20)

+ω2%a cos lπ
N∑
j=1

αj
b

π

2j

j2 − k2
∆jk = − i

ω
A0

[
4b

π(4− k2)
∆2k

]
where ∆jk = 1 for (j−k) even and ∆jk = 0 for (j−k) odd. When considering the ortogonality
of functions ϕkl(x, y) and ϕ?kl(x, y), Eqs. (19-20) become significantly simplified.

The solution for the elastic beam Ω̃ ⊂ R1 is given below. With regards to Eq. 16, the acoustic
pressure amplitude that is acting on the beam can be expressed in the form

p(x, a) =
N∑
k=1

N∑
l=1

dkl cos
kπx

b
cos lπ . (21)

The amplitude form of the elastic beam equation of motion can be written as

EI
∂4w

∂x4
− ω2%hS

∂2w

∂t2
= p(x, a) (22)
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where I = h3

120
and S = 0.1h. After substituting Eq. 17 and Eq. 21 into Eq. 22, consequent

multiplication by the term sin jπx
b

, j = 1, . . . , N and after integration over domain Ω̃ (i.e. for
x ∈ 〈0; b〉), the following system of equations is derived

αj
b

2

(
EI

j4π4

b4
− ω2%hS

)
=

N∑
k=1

N∑
l=1

dkl cos lπ
b

π

2j

j2 − k2
∆jk. (23)

Systems of Eqs. (19), (20) and (23) form a system of 2N2 + N linear algebraic equations for
2N2 + N unknown coefficients bkl, dkl and αj where j, k, l = 1, . . . , N . The system can be
written in a block form  A11 A12 0

A21 A22 A23

0 A32 A33

 ·
 b

d
α

 =

 0
c2

0

 (24)

where vectors b, d and α include unknown coefficients bkl, dkl and αj , respectively. Substi-
tuting coefficients bkl, dkl and αj into Eqs. (16-18) yields the solution for the acoustic pressure
amplitudes in the cavity and for amplitudes of elastic beam deflections and velocities.

5 ANALYTICAL AND NUMERICAL RESULTS

First, results of the approximate analytical solution for the benchmark test case of section 4
are presented and a comparison with numerical results of the in-house developed 3D FE solver
is provided. In order to test the performance of the new thin flat shell triangular element, the
2D-1D benchmark test case (rectangular cavity and elastic beam) is numerically solved as a 3D-
2D case (cuboidal cavity and elastic plate), Figure 5(right) and the numerical results from the
central plane section are compared to the aproximate analytical solution. Both the analytical
and the numerical solution of the vibro-acoustic problem is provided for the cavity domain with
dimensions a = 1 m, b = 2 m and the amplitude A0 = 0.001 m s−1 of the prescribed normal
velocity at boundary Γin, Figure 4. In the numerical model, the third dimension is given as
z = 0.1 m. The air density is %a = 1.177 kg m−3 and the speed of sound is c = 340 m s−1.
The elastic beam with thickness h = 0.001 m, density %h = 7800 kg m−3, Young modulus
E = 2.1× 1011 Pa and Poisson ratio µ = 0.3 is applied. The angular frequency ω = 50 rad s−1

and proportional damping coefficient β = 0 are considered. Comparison of analytically and
numerically computed absolute values of elastic beam/plate deflection amplitudes is provided
in Figure 5(left). A minor deviations of the two solutions can be observed. These are likely
caused by a limited number of harmonic functions respected in the approximate analytical so-
lution (the provided solution refers to N = 8). For higher number of harmonics the problem
becomes ill-conditioned. This is actually an advantage of numerical solution by means of FE
method. Figure 5(right) displays a complete numerical solution of the vibro-acoustic problem.
Both distribution of acoustic pressure amplitudes in the cavity domain and absolute values of
deflection amplitudes at elastic plate. For completeness, there is a comparison of acoustic pres-
sure amplitudes in the cavity as computed using approximate analytical solution, Figure 6(left),
and numerically, Figure 6(right), showing a good agreement of the two solutions.

The second case studied numerically is a simplified model of mobile screw compressor. The
compressor cavity is represented by a cuboidal computational domain geometry with dimen-
sions 1000 × 500 × 700 mm as depicted in Figure 7(top-left). The cavity bottom is rigid and
corresponds to the boundary Γw. All other walls of the cuboidal domain form the interface
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Figure 5: Benchmark test case: comparison of analytical (red) and numerical (blue) solution of absolute values of
elastic beam/plate deflection amplitudes (left) and numerical solution of distribution of acoustic pressure ampli-
tudes in cavity and of absolute values of deflection amplitudes at elastic plate (right).

Figure 6: Benchmark test case: distribution of acoustic pressure amplitudes in cavity - approximate analytical
solution (left) and numerical results (right).

boundary Γt between the compressor cavity and elastic housing. The elastic compressor hous-
ing is made of a thin metal plate with thickness h = 0.001 m and density %h = 7800 kg m−3.
The compressor engine body is modelled as a small block attached to the rigid bottom and its
surface represents the Γin boundary. The engine block dimensions are 400 × 300 × 300 mm
and the prescribed amplitudes of normal velocity vn are equal to 0.2249 m s−1. The following
two parameters are selected: angular frequency of compressor engine motion ω = 200 rad s−1

and the coefficient of proportional damping β = 0. All other parameter values are identical to
values from the previous benchmark test case. In Figure 7(right), the resulting distribution of
the acoustic pressure amplitudes in the cavity of the simplified model of the screw compressor
as solved by the implemented 3D FE solver is shown. Figure 7(bottom-left) displays abso-
lute values of deflection amplitudes at compressor housing in a direction that is normal to the
compressor housing surface.

The numerical results of a vibro-acoustic problem solved for a real geometry of the compu-
tational domain prepared according to the technical drawings provided by compressor producer
and consisting of the engine body, the inner cavity and compressor housing will be presented
during the conference ICOVP-2013.

6 CONCLUSIONS

The in-house 3D FE solver for vibro-acoustic analysis of screw compressors has been de-
veloped and the new 6-noded flat shell triangular finite element with 18 DOF implemented.
Correctness of the proposed method and of the implemented solver has been verified using the
benchmark test case, for which the analytical solution has been derived. First numerical results
of vibro-acoustic analysis have been presented for a simplified screw compressor model. In
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Figure 7: Simplified screw compressor model: computational domain geometry (top-left), numerical solution of
absolute values of deflection amplitudes at compressor housing (bottom-let) and numerical solution of distribution
of acoustic pressure amplitudes in compressor cavity (right).

order to quantify the total emitted acoustic power, the numerical solution in amplitude form
has to be performed for all angular frequencies of periodically varying surface velocity of the
compressor engine. Then the total emitted acoustic power is a superposition of all particular
solutions. In the near future, the solution of compressor housing vibrations that are kinemati-
cally excited by the rotating parts of the screw compressor will be addressed and superimposed
to the housing vibrations caused by the acoustic pressure field. The results of this numerical
analysis will enable modifications of the present mobile screw compressor design which will
lead to significant decrease in the total emitted acoustic power.

7 ACKNOWLEDGEMENTS

This work was supported by the project TA02010565 of the Technology Agency of the Czech
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