DYNAMIC INSTABILITY OF CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PULSATING AXIAL FLOW

Zenon J. G. N. del Prado1; Renata M. Soares1; Paulo B. Gonçalves2

1Federal University of Goias
zenon@eec.ufg.br; msrenata@gmail.com

2Catholic University of Rio de Janeiro
paulo@puc-rio.br

Keywords: Cylindrical shells, Non-linear vibrations, Fluid-structure interaction, Pulsating fluid.

Abstract. In this work the dynamic instability of simple supported circular cylindrical shells subjected to internal pulsating harmonic axial flow is studied. The fluid is assumed to be incompressible and non-viscous and the flow to be isentropic and the shell is considered to be made with an elastic, homogeneous isotropic material. To model the shell, the Donnell nonlinear shallow shell theory without considering the effect of shear deformation is used. A model with eight degrees of freedom, which satisfies the relevant boundary and continuity conditions, containing the fundamental, companion, gyroscopic and five axi-symmetric modes is used to describe the lateral displacements of the shell and the Galerkin method is applied to derive a set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The effect of pulsating flowing fluid on the non-linear dynamic behavior is observed in detail and for this; the parametric instability boundaries, bifurcations diagrams and time responses are obtained. The obtained results show the great influence of flow velocity and pulsating frequency on the non-linear behavior of circular cylindrical shells.
1 INTRODUCTION

The structural behavior of circular cylindrical shells is an important problem in industrial applications and several engineering areas use these structures extensively such as aeronautics, mechanical, civil, nuclear, among others.

In literature, it is possible to find several studies of non-linear vibrations of cylindrical shells in vacuum [1-4]; fluid-filled or partially filled with fluid [5-7] or shells immersed in fluid [8,9] but, only a few can be found related to the dynamic behavior of shells with internal pulsating fluid.

The fluid-structure interaction problem has several engineering applications, in some applications cylindrical shells are used to hold or transport fluid and usually are subjected to vibrations. Panda and Kar [10] indicate that, for a pipe with internal flow, for a certain value of flow velocity instability can occur by flutter or divergence and are very important to describe instability phenomena and other associated mechanisms. Due to different factors such as parametric excitation, flow velocity, external excitations, boundary conditions, elastic foundations and other non-linear sources the system exhibits several non-linear dynamics phenomena.

The pioneering works related to fluid-structure interaction in shells were due to Weaver and Unny [11] and Weaver and Wyklatun [12]. In the first one, authors used beam modal solutions to describe the shells and, in the second one, the stability of clamped-clamped shells subjected to high internal flow velocities was studied. The potential theory was used to describe the internal fluid flow the Flügge-Kempner shell theory was used to model the shell. In analysis flutter and divergence phenomena were observed.

Amabili et al [13] studied the non-linear dynamics and stability of simply supported cylindrical shells with non-viscous and incompressible internal fluid. To model then shells the Donnell non-linear shallow shell theory was used and the fluid-structure interaction was described by the liner potential theory. It was possible to observe the loss of stability by divergence in the system.

The dynamic instability of cylindrical shells subjected to hot fluid was studied by Ravikiran Kadoli and Ganesan [14] e Ganesan and Ravikiran Kadoli [15]. In both works a finite element formulation was used to describe the fluid-structure interaction together with a thermo mechanical model and the material of the shell was considered as isotropic and composite. The system of equations with periodical terms was obtained by linear transformations and solved by the 4th order Runge-Kutta method. The Floquet-Lyapunov theory was used to study the stability the parametrically excited system considering pulsating fluid with varying temperatures.

This work studies the effect of pulsating flowing fluid on the non-linear dynamic behavior of simple supported circular cylindrical shells subjected to internal harmonic pulsating axial flow. The fluid is assumed to be incompressible and non-viscous and the flow to be isentropic and the shell is considered to be made with and elastic, homogeneous isotropic material and the Donnell non-linear shallow shell theory is used. A model with eight degrees of freedom, which satisfies the relevant boundary and continuity conditions, containing the fundamental, companion, gyroscopic and five axi-symmetric modes is used to describe the lateral displacements of the shell and the Galerkin method is applied to derive a set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The non-linear response if the shell is analyzed by obtaining the frequency-amplitude relations, the parametric instability boundaries and bifurcation diagrams. The obtained results display the strong influence of flow on the non-linear response of the shell.
2 PROBLEM FORMULATION

Consider a simply supported cylindrical shell with radius R, thickness h, length L, containing an internal flowing fluid with velocity U. Figure 1 shows a simply supported cylindrical shell where the axial, circumferential and radial co-ordinates are denoted by x, $y = R\theta$ and z, respectively. The corresponding displacements of the shell middle surface are denoted by u, v and w. The shell is assumed to be made of an elastic, homogeneous and isotropic material with Young’s modulus E, Poisson ratio ν and mass density ρ_s. In this work the mathematical formulation follows that previously presented in references [3, 13, 16].

\[
\begin{align*}
2 & \frac{\partial^4 F}{\partial x^4} + \frac{2}{R^2} \frac{\partial^4 F}{\partial \theta^2 \partial x^2} + \frac{1}{R^4} \frac{\partial^4 w}{\partial \theta^2} + ch \frac{\partial w}{\partial t} + \rho \frac{\partial^2 w}{\partial t^2} = \\
& -P_h + \frac{1}{R} \frac{\partial^2 F}{\partial x^2} + \frac{1}{R^2} \frac{\partial^2 F}{\partial \theta^2} \frac{\partial^2 w}{\partial \theta^2} - \frac{2}{R^2} \frac{\partial^2 F}{\partial \theta \partial x} \frac{\partial w}{\partial x} + \frac{1}{R^2} \frac{\partial^2 F}{\partial x^2} \frac{\partial^2 w}{\partial \theta^2} \frac{\partial^2 w}{\partial \theta^2} \frac{\partial^2 F}{\partial \theta^2}
\end{align*}
\]

where $D = E h^3 / [12(1-\nu^2)]$ is the flexural rigidity, c (kg/m3s) is the damping coefficient, P_h is the radial pressures applied to the surface of the shell as a consequence of the contained flowing fluid.

The compatibility equation is given by:

\[
\begin{align*}
\frac{\partial^4 F}{\partial x^4} + \frac{2}{R^2} \frac{\partial^4 F}{\partial \theta^2 \partial x^2} + \frac{1}{R^4} \frac{\partial^4 F}{\partial \theta^2} &= Eh \left(-\frac{1}{R} \frac{\partial^3 w}{\partial x^2} + \frac{1}{R^2} \left(\frac{\partial^2 w}{\partial \theta \partial x} \right)^2 - \frac{1}{R^2} \left(\frac{\partial^2 w}{\partial \theta^2} \right)^2 \right) \\
& \frac{\partial^3 w}{\partial x^2} \frac{\partial^2 \theta}{\partial \theta^2}
\end{align*}
\]

The forces per unit length in the axial and circumferential directions, as well as the shear force are given in terms of the stress function by [17]:

\[
N_x = \frac{1}{R^2} \frac{\partial^2 F}{\partial \theta^2}, \quad N_\theta = \frac{\partial^2 F}{\partial x^2}, \quad N_{x\theta} = -\frac{1}{R} \frac{\partial^2 F}{\partial x \partial \theta}
\]

The boundary conditions for the simply supported shell with axial loads at $x=0$ and $x=L$ are:

\[
w = 0, \quad M_x = \frac{\partial^2 w}{\partial x^2} = 0, \quad v = 0
\]

2.1 Expansion for the lateral displacement

From previous investigations on modal solutions for the nonlinear analysis of cylindrical shells under axial fluid flow, a suitable expansion for present problem is as follows [13, 16]:
\[
\begin{align*}
\psi_t - \frac{\partial^2}{\partial x^2} \psi &= V, \\
\end{align*}
\]
where \(U_E \) is the flow velocity, \(U_D \) represents the amplitude of perturbation and \(\Omega_f \) is the pulsating frequency of flow.

3 NUMERICAL RESULTS

For the numerical analysis, consider a simply supported cylindrical shell of radius \(R = 1.6 \) \(m \) and thickness \(h = 0.002 \) \(m \) \((h/R = 800)\) with Young’s modulus \(E = 210 \) GPa, density \(\rho_s = 7850 \) Kg/m\(^3\), Poisson’s ratio \(\nu = 0.3 \) and density of fluid \(\rho_f = 1000 \) Kg/m\(^3\). The damping coefficient is defined as \(c = 2\zeta\rho_s\omega_0 \) where \(\zeta \) is the viscous damping factor. In the present analysis, the adopted viscous damping factor is \(\zeta = 0.02 \).

To study the influence of geometry on the response of the shell, three different \((L/R)\) relations were adopted. Table 1 displays the \(L/R \) relation used, its corresponding axial half-wave number \((m)\), circumferential wavenumber \((n)\), natural frequency of both empty \((\omega_o)\) and fluid filled \((\omega_{of})\) shell and critical flow velocity \((U_{cr})\). As observed, low \(L/R \) relation will generate higher natural frequencies and critical flow velocities than high \(L/R \) ratios.

<table>
<thead>
<tr>
<th>(L/R)</th>
<th>(m)</th>
<th>(n)</th>
<th>(\omega_o) (rad/s)</th>
<th>(\omega_{of}) (rad/s)</th>
<th>(U_{cr}) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>6</td>
<td>56.66</td>
<td>13.39</td>
<td>35.09</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>46.74</td>
<td>10.13</td>
<td>31.72</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>40.21</td>
<td>8.09</td>
<td>29.47</td>
</tr>
</tbody>
</table>

Figure 2 displays the frequency-amplitude relation of the cylindrical shell for the three adopted geometric relations for increasing values of flow velocity. In this Figure 2 the natural frequencies \((\omega_f) \) are parameterized in relation to the natural frequency of the fluid-filled shell \((\omega_{of}) \) considering only permanent flow \((U_D=0)\).

As can be observed, the non-linearity of the shell depends directly on both geometric relations and internal flow velocity. All curves display softening behavior but shell with lower \(L/R \) ratio depicts higher non-linearity than shells with high \(L/R \) ratio; it is possible to that, flow velocity affects the non-linear response of the shell and, as the flow velocity is increased the non-linearity of the shell is also increased.
Figure 2 – Influence of flow velocity and geometry on the frequency-amplitude relations. (a) $U_E = 0.0 \ U_{cr}$; (b) $U_E = 0.1 \ U_{cr}$; (c) $U_E = 0.2 \ U_{cr}$; (d) $U_E = 0.3 \ U_{cr}$

Figure 3 shows the effect of the flow velocity U_E on the frequency-amplitude relations of the shell for the three selected geometries and increasing values of flow velocity. As can be seen, the flow velocity affects the non-linear behavior of the shell and, as the flow is increased, the non-linearity is highly enhanced.

Now, let’s consider internal pulsating fluid acting in the shell. Figure 4 displays the parametric instability boundaries of the shell considering the three selected geometries for increasing values of the amplitude of the pulsating flow U_D and varying the harmonic flow frequency, Ω_f. It was considered three values for permanent flow $U_E = 0$, $U_E = 0.1 \ U_{cr}$ and $U_E = 0.2 \ U_{cr}$. These boundaries are obtained by increasing slowly the excitation amplitude of U_D while holding the frequency constant and are is composed of various curves, each one associated with a particular bifurcation event. It is possible to observe that the amplitude of the pulsating fluid has the effect of shifting the instability boundaries to the left. Also, for low values of U_E it is possible to observe the appearance of well between the principal and secondary regions of parametric instability. When U_E is increased, the boundaries are displaced to a lower level which means that hydro-dynamic pressure due to fluid affects strongly the instability of cylindrical shells.
Figure 4 – Parametric instability boundaries. (a) $L/R = 5$ (b) $L/R = 6$ (c) $L/R = 7$. $U_E = 0.0$; $U_E = 0.1$; $U_E = 0.2$

Figure 5 – Typical bifurcations diagrams. (a) $L/R = 5$; $U_E = 0.0$; $\Omega = 1.1$; (b) $L/R = 5$; $U_E = 0.0$; $\Omega = 1.3$; (c) $L/R = 6$; $U_E = 0.0$; $\Omega = 0.8$; (d) $L/R = 6$; $U_E = 0.0$; $\Omega = 1.3$; (e) $L/R = 7$; $U_E = 0.0$; $\Omega = 1.0$; (f) $L/R = 7$; $U_E = 0.0$; $\Omega = 1.3$. ——— stable points; - - - - unstable points.
Figure 5 shows typical bifurcation diagrams associated with the instability regions due to the variation of the pulsating fluid flow, for different values of the excitation frequency and velocity of fluid. These bifurcation diagrams were obtained by using the brute-force method, together with continuation techniques by increasing the amplitude of flow velocity. In all diagrams for low values of flow velocity, the shell displays trivial solutions and, at a critical point the shell looses stability showing supercritical and subcritical bifurcations depending on both the value of L/R relation and frequency of pulsating fluid.

![Bifurcation Diagrams](image)

Figure 6 – 3D bifurcations diagrams. (a) $L/R = 5$: $U_{E} = 0.0$, $\Omega = 1.3$; (b) $L/R = 6$: $U_{E} = 0.0$, $\Omega = 0.8$, (c) $L/R = 6$: $U_{E} = 0.0$, $\Omega = 1.3$; ——— stable points; - - - - unstable points.

Finally, Figure 6 depicts the bifurcations diagrams in 3D space driven mode (ξ_{11}), companion mode (ξ_{11c}) and gyroscopic mode (ξ_{11g}) as a function of amplitude of pulsating flow. Through these diagrams it is possible to have a whole vision of the non-linear behavior of the shell as well as the behavior of both companion and gyroscopic modes. As can be seen, depending on the geometric relation and on the frequency of the pulsating flow, the
shell displays softening behavior and the companion and gyroscopic modes will have very different vibrations with co-existence of stable and unstable solutions.

4 CONCLUSIONS

• In this work the influence of geometry on the linear and non-linear vibrations of simply supported isotropic cylindrical shells subjected to internal harmonic pulsating fluid, too model the shell, the Donnell’s non-linear shallow shell theory is used.

• Results show that the geometry relations L/R and R/h ratios and internal flow have strong influence on the critical flow velocity and natural frequencies.

• When a pulsating fluid flow is applied to the shell, the parametric instability boundaries are strongly affected with new sub-harmonic wells and the shell displays both stable and unstable paths.

ACKNOWLEDGEMENTS

This work was made possible by the support of the Brazilian Ministry of Education – CAPES, CNPq and FAPERJ-CNE.

REFERENCES

