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ABSTRACT 
 
Soft electroactive (SEA) materials exhibit the exotic capability of high-speed electrical actuation with strains 
greater than 100%. In addition, they also possess many other excellent electromechanical properties such as low 
actuation voltage, high fracture toughness and energy density. They therefore have received considerable academic 
and industrial interest, and found widespread applications ranging from actuators, sensors and energy harvesters 
to biomedical and flexible electronic devices. However, there are three main difficulties associated with soft 
electroactive (SEA) structures, i.e. coupling between electric and mechanical field, nonlinear material constitutive 
behavior and large deformation. Here we report a study on axisymmetric vibrations of an incompressible SEA 
cylindrical shell. Either axisymmetric torsional or longitudinal vibrations are considered when the cylindrical shell 
is subject to an inhomogeneous biasing field, which is induced by radial electric voltage and axial pre-stretch. The 
state-space method is employed to derive the frequency equations for two separate classes of axisymmetric vibration 
of the cylindrical shell. Numerical examples are considered to validate the convergence and accuracy of the method. 
The results demonstrate that the axisymmetric vibration characteristics of the SEA cylindrical shell could be 
manipulated significantly by properly choosing the electromechanical biasing field as well as its geometry. 
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Figure 1: The first two resonant frequencies  of the torsional vibration with n=1 as functions of the radial electric 

voltage V for a thick and short SEA cylindrical shell under different axial pre-stretches z 
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ABSTRACT 
For examining the stability of a time integration method when it is used to solve nonlinear dynamics, we have 
proposed a parameter spectral analysis method, of which the main idea is the introduction of a scalar 𝛿𝛿𝑡𝑡, the 
ratio between the frequency 𝜔𝜔𝑡𝑡 of the current time point and the frequency 𝜔𝜔𝑡𝑡−ℎ of the previous point. The used 
single degree-of –freedom system in this spectral method is  

𝑥̈𝑥𝑡𝑡 + 2𝜉𝜉𝛿𝛿𝑡𝑡𝜔𝜔𝑡𝑡−ℎ𝑥̇𝑥𝑡𝑡 + (𝛿𝛿𝑡𝑡𝜔𝜔𝑡𝑡−ℎ)2𝑥𝑥𝑡𝑡 = 0 

This theory can find stability conditions of time integration methods, see Table 1. Numerical experiments 
indicate that these stability conditions can accurately capture the moment at which time integration methods 
begin to diverge. 

Table 1: Stabilities of some time integration methods. 

Method Formulations Stability criteria  
Stability Limit 
(δt=1) 

CDM  ẍt=(xt-h-2xt+xt+h)/h2 
ẋt=(-xt-h+xt+h)/2h 

δt
2τt-h

2 − 4≤0 or τt
2 − 4≤0 τ2 − 4≤0 

EG-α, ρb=0 
[1] 

xt+h=xt+hẋt+h2(-2ẍt+5/2ẍt+h) 
ẋt+h=ẋt+h(-3/2ẍt+5/2ẍt+h) 

δt
2τt-h

2 − 12/5≤0 or τt
2 − 12/5≤0 τ2 − 12/5≤0 

TR xt+h=xt+hẋt+h2(ẍt+ẍt+h)/4 
ẋt+h=ẋt+h(ẍt+ẍt+h)/2 

1 − δt
2≤0 or ∆t < 0  Unconditionally 

stable 
CH-α [2] xt+h=xt+(𝑰𝑰+1/2h2M-1K0)

-1
hẋt+ 

1/2(𝑰𝑰+1/2h2M-1K0)
-1
h2ẍt 

ẋt+h=ẋt+h(ẍt+ẍt+h)/2 

τt-h
2 (1 + δt

2)− 4(2 + τ0
2)≤0 Unconditionally 

stable 

In addition, using the parameter spectral analysis method, we have developed a generalized central difference 
method, as 

ẍt=(xt-h − 2xt+xt+h)/h2, ẋt=(xt+h − xt-h)/(2h),𝒙𝒙𝑡𝑡 = (𝒙𝒙𝑡𝑡+ℎ + 2𝜌𝜌∞𝒙𝒙𝑡𝑡 + 𝜌𝜌∞2 𝒙𝒙𝑡𝑡−ℎ)/(1 + 𝜌𝜌∞)2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑴𝑴𝒙̈𝒙𝑡𝑡 + 𝑵𝑵(𝒙𝒙𝑡𝑡 , 𝒙̇𝒙𝑡𝑡) = 𝑹𝑹𝑡𝑡 , 
which is unconditionally stable for damped and undamped (ξ=0) nonlinear systems, as shown in Fig. 1. Another 
important thing is that the algorithmic parameters of this new time integration method are determined by 
optimizing low-frequency accuracy. Numerical experiments demonstrate the stability, accuracy and efficiency 
advantages of this time integration method over other methods. 

 

a) undamped case 

 

b) damped case 
Figure 1: Spectral radius versus δt and τt-h : a) undamped case (𝜌𝜌∞=0, ξ=0); b) damped case (𝜌𝜌∞=1, ξ=0.1) 
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ABSTRACT

The middle ear is one of the smallest biomechanical systems in the human body. Therefore a treatment of the ear
is especially demanding task. An implantable middle ear hearing device (IMEHD) is one of the technique, used in
clinical practice, to improve the hearing process [1]. To investigate the IMEHD, a 6-degree of freedom (6dof) model
is proposed here. It is composed of 3dof subsystem of the middle ear, 2dof subsystem of the IMEHD and excitation
current flow through the transducer. That gives us 6dof model of the implantable middle ear (Fig.1) which is
nonlinear both for the sake of properties of the middle ear and the IMEHD. The main objective of this paper is
to explain the role of both (a) the electromechanical coupling between the mechanical and the electromagnetic
subsystems and (b) properties of an implant clip, which connects the stapes to a main part of the implant -
the floating mass transducer. The proposed bio-electro-mechanical model should generate interesting nonlinear
phenomena, especially when excitation and coupler stiffness change. To find resonance curves and bifurcation
diagrams the method of multiple scales is engaged. As a result, different types of system response are observed,
also on the basis of numerical simulations. Results obtained in this study can be used to formulate recommendations
for practical implementation.
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Figure 1: Six degree of freedom model of the implanted middle ear.
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ABSTRACT

Mechanical resonance phenomenon, seen in [1], was discovered by Euller L. in 1750 when he investigated the forced
mass-spring system. Mechanical resonance has been a huge obstacle since the last century to a wide range of
modern engineerings. In this talk we present the steps to remove the engineering resonances, as the following.

1. SD Oscillators. Starting from a single SD oscillator, seen in [2], with negative stiffness (SNS), seen in [3],
the k−multiple SD oscillators or (k-MNS) (k = 1, 2, · · ·) can be constructed by linking k SD oscillators to the
mass with the other ends pined to each fixed points separately providing k geometrical parameters.

2. QZS Isolators. The quasi-zero stiffness (QZS) isolators, seen in [4], of order 2k − 1 can be integrated by
connecting the conventional harmonic positive oscillator in parallel with the k−MNS unit.

3. Suspensor. Taking the limit of the high-order QZS systems, we reach the so called mechanical suspensor
free of resonance within a prescribed distance to nullify gravity by relative mass enabling human beings to
experience the space life with zero gravity on earth and to live aboard spaceship with ground gravity.

Isolation performance of linear, QZS system and the suspensor has been obtained theoretically, shown in Fig.1(a),
and the performence of the suspensor has also been tested experimentally, shown in Fig.1 (b) and (c) for isolation,
(d) and (e) for impact, the details seen in the corresponding captions.
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Figure 1: (a) Transmissibility for linear, QZS and suspensor for black, blue and red with solid, dashed and dotted for
damping ratio ξ = 0.1, 0.2 and 0.3, respectively, (b) and (c) the sweeping and random frequency, (d) and (e) the impact
responses for time and frequency domain, the black and the red for input and responses, respectively.
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