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Abstract. Dynamic modeling of the robot manipulator is very important to design model-based
control and for simulation purposes. A steady increase in the demand of high speed operations,
low energy consumption and increase in payload to arm weight ratio motivates the use of light
weight materials to build manipulators. With the use of light weight material, the rigid link
assumption is no longer valid and, in some cases, the transmission system at manipulator joints
can introduce flexibility. Ignoring the link and joint flexibility can cause poor estimation of
dynamic parameters and, eventually, poor performance of the control design. To obtain an
accurate dynamic model of a robot manipulator, the flexibility of the links and joints should
be accounted. The inclusion of the dynamics due to flexibility makes the robot manipulator a
continuous system and requires infinite degrees of freedom to estimate the dynamic parameters.
It also establishes strong coupling between gross rigid body motion and elastic deformations of
links and joints.

In this paper, a general purpose algorithm is presented that allows to obtain a dynamic
model of spatial flexible manipulators for model based control design and simulation purposes.
Both link and joint flexibilities are considered in the dynamic modeling. The flexible links are
discretized to get a finite dimensional dynamic model. The deformation of each link is assumed
to be due to both bending and torsion. The deformation of the joints is assumed to be due to pure
torsion. The deformation of each link is assumed to be small relative to the rigid body motion.
Thus, the configuration of each link is defined as the sum of rigid and elastic coordinates using a
floating reference frame. The dynamic model is first derived using the principle of virtual work
along with finite element method in generalized coordinates for general purpose implementa-
tion. Then, the system of equations in generalized coordinates is converted into independent
coordinate form using a recursive kinematic formulation based on the topology of a manipula-
tor. The advantage of general purpose algorithm is it uses minimum set of equations that define
the dynamics of flexible manipulator, which is required in control design to reduce computation
cost. In addition, it allows the dynamic modeling of any arbitrary manipulator configuration.
Numerical simulation results of an open chain RRR manipulator with flexible links and flexible
joints is presented to show the effects of flexibility on robot manipulator dynamics.
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1 INTRODUCTION

Industrial manipulators are designed to increase the productivity and to help humans in te-
dious and hazardous work environment. These manipulators are made of heavy and stiff ma-
terials to achieve high precision on endeffector motion. Heavy industrial manipulators have
high mass to payload ratio, consume more power and have limited operation speed. To improve
the performance of industrial manipulators, the focus on light weight manipulators has been
increased in recent years [1]. Other applications of light weight manipulators can be found in
space applications for communication, space exploration, solar power generation [2], fire rescue
turntable ladders [3] and crane boom [4].

The side effects of light weight manipulators are their low stiffness especially of the links.
In addition, also the transmission system at manipulator joints can introduce flexibility. The
deformations of links and joints have a strong coupling with the gross rigid body motion. Ig-
noring these flexibilities in control design can cause poor performance [5]. To improve the
performance of control, an accurate dynamic model that incorporates the link and joint flexi-
bilities is mandatory. Flexible manipulators are distributed parameter systems, hence infinite
degrees of freedom are required to characterize the dynamic behavior of the system. However,
the exact dynamic modeling of such systems is not feasible from the control point of view. A
finite dimensional dynamic model can be obtained by discretizing the continuous systems using
assumed mode method (AMM) or finite element method (FEM).

In [6] dynamic modeling of flexible link manipulator using recursive lagrangian dynamics
via transformation matrix is presented. It is an extension of the dynamic modeling of rigid
manipulators. The kinematics of joint rotations and link deformations is defined using a 4×4
transformation matrix. The link deformations are assumed to be small and approximated us-
ing assumed mode method. In [7] a closed form dynamic model using Lagrangian approach
and assumed mode method for a planar multi-link light weight robot is presented whereas [8]
proposes a linearized dynamic model for a multilink planar flexible link manipulator for simu-
lation and control design. Elastic deformations are defined using Euler-Bernoulli beam theory,
and the total deformations of each link are approximated using assumed mode method. The
main drawback of assumed mode method is that it is not suitable of finding modes for non-
regular cross-sections and that the choice of boundary conditions for multilink manipulator is
not unique. The possible boundary conditions reported in the literature are clamped, pinned-
pinned and free-free boundary conditions.

In [9] numerical and experimental investigation on the dynamic modeling of planar flexi-
ble manipulators is presented. The dynamic model is developed using Lagrangian approach
and finite element method. The experimental validation is carried out considering a single link
flexible manipulator and comparing the results with numerical finite element model in both fre-
quency and time domain. The FEM model shows closer agreement with experimental results. In
[10] a general purpose computer program SPACAR for numerical simulations of flexible mech-
anism and manipulators is shown. SPACAR uses a finite element based Lagrangian formulation
to define the dynamics of the system. The program incorporates a virtual power type approach,
to automatically eliminate the non-working constraints forces and reactions. This approach re-
duces the Lagrangian formulation to a minimal set of ordinary differential equations. In [11]
is presented a dynamic modeling of spatial flexible link manipulators using principle of virtual
power and finite element method is presented whereas [12] proposes a redundant Lagrangian
FEM formulation for the dynamic modeling of flexible links and joints. The elastic deforma-
tion on each link is assumed to be due to bending and torsion. The deformation of each link is
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Figure 1: Arbitrary point on a flexible link. Figure 2: Elastic coordinates on finite element.

expressed in a tangential local floating frame. The constrained equations due to the connectivity
of each link are added to equations of motion by using Lagrangian multiplier. The redundant
dynamic model requires more computational power. In [13] develops a recursive Newton-Euler
formulation for a flexible link open loop robot system. The recursive formulation converts the
redundant form into minimum set of equations. However, this formulation ignores the joint
flexibility. Ignoring the joint flexibility can significantly affect the system Eigen frequencies
[14].

In this paper, the systematic approach for the dynamic modeling of spatial flexible manipu-
lators considering both link and joint flexibility is presented. The link flexibility is assumed due
to bending and torsion, where shear deformations are neglected. The joint flexibility is assumed
due to pure torsion. The deformation of each link is assumed to be small with respect to gross
rigid body motions. Hence, the configuration of each link is defined as the sum of rigid and elas-
tic coordinates using floating reference frame. A general purpose program is developed based
on the principle of virtual work and finite element method. The dynamic model is first derived
using generalized coordinates for general purpose implementation. Then, a recursive kinematic
formulation is presented based on the topology of the flexible manipulator which converts the
system of equations in absolute coordinates into relative coordinates.

2 Kinematics of Flexible Manipulators

The kinematic equations that define an arbitrary displacement of a flexible link i shown
in Figure 1 is derived using floating reference frame formulation. Floating reference frame
formulation uses two sets of coordinates i.e., body reference and elastic coordinates. The body
reference coordinates describe the position and orientation of body reference frameXiYiZi with
respect to global coordinate systemXY Z. The elastic coordinates describe the deformations on
flexible link i with respect to body reference frameXiYiZi. The elastic deformations on flexible
link are approximated using finite element method to obtain finite set of elastic coordinates. The
elastic coordinates of finite element shown in Figure 2 is defined using floating reference frame
XijYijZij with respect to body reference frame XiYiZi. The position of an arbitrary point on
flexible link i can be defined as

ri = Ri + Aiui (1)

where Ri is the position vector of body reference frame XiYiZi. Ai is the transformation matrix
defined using euler parameters βi = [β0 β1 β2 β3]. ui is the local position vector defined with
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respect to XiYiZi.

ui = uri + uei (2)

where uri is the undeformed position vector and uei is deformation vector which is defined as

uei = Siq
e
i (3)

In which Si is the shape function matrix and qei is elastic coordinates vector. Differentiating
Eq.(1) with respect to time gives the velocity of an arbitrary point on a flexible link. It is written
as

ṙi = Ṙi + Ai(ωi × ui) + AiSiq̇
e
i (4)

where ωi is angular velocity vector defined in body coordinate system XiYiZi.

3 Dynamic Modeling of Flexible Manipulators

The equations of motion of a flexible manipulator are derived using the principle of virtual
work. The dynamics of flexible links is first derived using absolute coordinates for the general
purpose implementation. Then the system of equations in absolute coordinates is converted into
minimum set of equations or relative coordinate form using recursive kinematic equations.

3.1 Flexible link modeling

The virtual work of total forces acting on flexible link i is defined as

δWi = δW i
i + δWi

s + δWi
e (5)

where δW i
i , δW

s
i , and δW e

i are respectively the virtual work of inertia forces, elastic forces,
and external forces. The flexible link i is discretized using finite element method to get finite
dimensional dynamic model. The representation of finite element ij on link i is shown in Fig-
ure 2. The virtual work of flexible link i can be obtained by summing up the virtual work of its
elements.

The virtual work of inertia forces acting on element ij is written as

δW i
ij =

∫
Vij

ρij r̈
T
ij δrij dVij (6)

where ρij and Vij are respectively, the mass density and volume of element ij. r̈ij and δrij are
respectively the acceleration vector and virtual displacements of an arbitrary point on element
ij. The virtual displacement δrij is written as

δrij = Lijδqij (7)

where
Lij =

[
I −AiũijGi AiSij

]
, δqij =

[
δRij δβij δqeij

]T
(8)

where qij is generalized coordinates of element ij. The acceleration vector r̈ij of an arbitrary
point can be obtained by differentiating Eq. 4 with respect to time.

r̈ij = Lij q̈ij +Qij (9)
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in which q̈ij is the generalized accelerations and Qij is the quadratic term which is written as

Qij = Ai
(
ω̃i
)2
uij + 2Aiω̃iSij q̇

e
ij (10)

Substituting acceleration vector r̈ij and virtual displacements δrij in Eq. 6 gives

δW i
ij =

∫
Vij

ρij q̈
T
ij L

T
ij Lijδqij dVij +

∫
Vij

ρij Q
T
ij Lijδqij dVij (11)

δW i
ij =

[
q̈Tij Mij −QvT

ij

]
δqij (12)

where Mij and Qv
ij are respectively the inertia matrix and quadratic velocity term.

Mij =
∫
Vij
ρij

 I −Ai ũij Gi Ai Sij

G
T
i ũ

T
ij ũijGi G

T
i ũ

T
ijSij

symmetric STijSij

 dVij (13)

and

Qv
ij = −

∫
Vij
ρij

 I

−GT

i ũ
T
ijA

T
i

STijA
T
i

Qij dVij (14)

The virtual work of elastic forces due to the deformation of element ij can be defined as

δW s
ij = −

∫
Vij
σTijδεijdVij (15)

where σij and εij are stress and strain vectors of element ij.

εij = Diju
e
ij = DijSijq

e
ij (16)

σij = Eijεij = EijDijSijq
e
ij (17)

Substituting Eq. 16 and Eq. 17 in Eq. 15 gives

δW s
ij = −qeTij

[∫
Vij

(DijSij)
TEijDijSijdVij

]
δqeij = −qeTij Ke

ijδq
e
ij (18)

where Dij is the differential operator, Sij is the element shape function matrix and Eij is the
elastic coefficient. The virtual work of external forces acting on element ij is defined as

δW e
ij = −QeT

ij δq
i (19)

Substituting δW i
ij , δW

s
ij and δW e

ij in Eq. 5 yields

δWij =
[
q̈Tij Mij −QvT

ij − qe
T

ij K
e
ij −QeT

ij

]
δqij (20)

From the Eq. 20 the equations of motion can be rearranged as

Mij q̈ij = Qe
ij +Qv

ij +Qs
ij (21)

where Qe
ij are the external forces applied. Qv

ij and Qs
ij are respectively the quadratic veloc-

ity term and elastic forces. Eq. 21 can be extended to all finite elements in flexible link and
assembled based on element connectivity to form a dynamic model of flexible link.
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Figure 3: Flexible joint j assembly

3.2 Flexible joint modeling

The revolute joint j with actuator and transmission system is shown in Figure 3. The actuator
is assumed as electric motor and torsional spring represents the flexibility induced due to trans-
mission system. θj and θi respectively the rotations of actuator j and link i. The virtual work of
torque exserted on link i by actuator j and transmission system is defined as

δWj = (Jj θ̈j + Cj(θ̇j − θ̇i) +Kj(θj − θi)− Tj) δθij (22)

where Jj is the inertia of the motor.Kj and Cj are the stiffness and damping coefficients of
transmission system. Tj is the torque produced by motor. δθij is the virtual change at joint. The
equations of motions of joint assembly is written as

Jj θ̈j + Cj(θ̇j − θ̇i) +Kj(θj − θi) = Tj (23)

3.3 Recursive Kinematic Formulation

Consider two flexible link i-1 and i shown in Figure 4 which are connected by a revolute
joint j. The joint allows relative rotation along joint axis and has one rigid body coordinates θi.
The following kinematic relationship for revolute joint holds the relation between generalized

Figure 4: Representation of Relative body Coordinates
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coordinates and joint coordinates

Ri + Aiu
j
i −Ri−1 − Ai−1u

j
i−1 = 0 (24)

ωi = ωi−1 + ωji−1 − ω
j
i + ωi,i−1 (25)

where uji and uji−1 are local position vectors of joint defined on link i and i-1 respectively. ωji
and ωji−1 are respectively the local angular velocity vectors of joint due to elastic deformations
on link i and i-1. These vector quantities are defined as

ωji−1 = Ai−1S
jr
i−1q̇

e
i−1 (26)

ωji = AiS
jr
i q̇

e
i (27)

In which Sjri and Sjri−1 are respectively the constant shape function matrix of joint rotations due
to elastic deformations on link i and i-1. ωi,i−1 is relative angular velocity vector of link i with
respect to link i-1 is expressed as

ωi,i−1 = νi−1θ̇i (28)

where νi−1 is rotation axis defined with respect to link i-1 in global coordinate system XY Z.

νi−1 = Ai−1νi−1 (29)

νi−1 is constant vector defined with respect to link i-1 in body coordinate systemXi−1Yi−1Zi−1.
Differentiating Eq. 24 twice with respect to time and Eq. 25 once with respect to time gives

R̈i − Aiũ
j
iGiβ̈i + AiS

jt
i q̈

e
i = R̈i−1 − Ai−1ũ

j
i−1Gi−1β̈i−1 + Ai−1S

jt
i−1q̈

e
i−1 + γR (30)

ω̇i = ω̇i−1 + Ai−1S
jr
i−1q̈

e
i−1 − AiS

jr
i q̈

e
i + Ai−1νi−1θ̈i + γβ (31)

where Sjti and Sjti−1 are respectively the shape functions of joint translations defined on link i
and i-1. γR and γβ are written as

γR = −Ai
(
ω̃i
)2
uji + Ai−1

(
ω̃i−1

)2
uji−1 − 2Aiω̃iS

jt
i q̇

e
i + 2Ai−1ω̃i−1S

jt
i−1q̇

e
i−1 (32)

γβ = Ai−1ω̃i−1νi−1θ̇i + Ai−1ω̃i−1S
jr
i−1q̇

e
i−1 − Aiω̃iS

jr
i q̇

e
i (33)

The equation Eq. 30 and Eq. 31 can be written in a compact form as

Diq̈i = Di−1q̈i−1 +HiP̈i + γi (34)

where

Di =

 I −Ai ũ
j
i Gi AiS

jt
i

0 AiGi AiS
jr
i

0 0 I

 (35)
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Di−1 =

 I −Ai−1ũ
j
i−1Gi−1 Ai−1S

jt
i−1

0 Ai−1Gi−1 Ai−1S
jr
i−1

0 0 0

 (36)

Hi =

[
Ai−1νi−1 0

0 I

]
(37)

P̈i =
[
θ̈i q̈ei

]T
(38)

γi =
[
γR γβ

]T
(39)

The generalization of recursive formulation for a n link manipulator is expressed as
D1 0 · · · 0
−D1 D2 · · · 0

...
... . . . 0

0 0 −Dn−1 Dn



q̈1
q̈2
...
q̈n

 =


H1 0 · · · 0
0 H1 · · · 0
...

... . . . 0
0 0 0 Hn



P̈1

P̈2
...
P̈n

+


γ1
γ2
...
γn

 (40)

The generalized accelerations q̈i in absolute coordinates can be expressed in terms of relative
coordinates as

q̈i = BiP̈i + γi (41)

where

Bi =


D1 0 · · · 0
−D1 D2 · · · 0

...
... . . . 0

0 0 −Dn−1 Dn


−1 

H1 0 · · · 0
0 H1 · · · 0
...

... . . . 0
0 0 0 Hn

 (42)

And

γi =


D1 0 · · · 0
−D1 D2 · · · 0

...
... . . . 0

0 0 −Dn−1 Dn


−1 

γ1
γ2
...
γn

 (43)

Substituting the generalized acceleration q̈i in Eq. 21 and premultiplying with BT
i gives the

dynamic model of flexible links in relative coordinates form.

BT
i MiBiP̈i = BT

i (Qe
i +Qv

i +Qs
i −Miγi) (44)

which can written as

M̄iP̈i = Q̄i (45)

where

M̄i = BT
i MiBi, Q̄i = BT

i (Qe
i +Qv

i +Qs
i −Miγi) (46)

The Eq. 45 along with Eq. 23 provides a coupled and nonlinear dynamic model of flexible
link and flexible joint which can be used for simulation and model based control design purpose.
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Figure 5: Spatial RRR flexible manipulator.

4 Numerical Simulation

A spatial RRR manipulator shown in Figure 5, is considered to demonstrate the effect of link
and joint flexibility on manipulator dynamics. Each flexible link is discretized using two finite
element beams with six degrees of freedom on each node and one degree of freedom for rigid
body rotations i.e. θi where i = 1, 2, 3. Manipulator joint has one rigid body rotation i.e. θj
where j = 1, 2, 3. The torsional stiffness Kj for j = 1, 2, 3 at manipulator joints is defined as
5000 Nm/rad. The damping effects on links and joints are ignored. The physical parameters of a
RRR spatial manipulator is presented in Table 1. Uniform cross-section and material properties
are assumed on each link. The numerical simulation for different cases considering rigid links
and rigid joints, flexible links and rigid joints, flexible links and flexible joints is performed
to study the effect of flexibility on manipulator dynamics. A constant torque of 400 Nm, is
applied at manipulator joints for each case to compare manipulator motion. The deformations
of manipulator endeffectorX4Y4Z4 along the X,Y and Z direction is shown in Figure 6, Figure 7
and Figure 8 respectively. It shows the deformations of flexible manipulator endeffector with
respect to the rigid manipulator endeffector motion. The deformation of flexible manipulator
joint θi with respect to rigid manipulator joint motion is shown in Figure 9, Figure 10 and
Figure 11 respectively. The numerical simulation results show significant effect of link and joint
flexibility on the overall manipulator motion. In addition, the joint flexibility in manipulator can
significantly alter the motion of the manipulator.

Parameter Link 1 Link 2 Link 3
Link Length (m) 1 4.0 3.5
C/s Area (m2) 0.028 0.0020 0.0008

Moment of Inertia (m4) 8.33×10−7 6.24×10−7 5.37×10−7

Polar moment of Inertia (m4) 1.66×10−6 1.24×10−6 1.07×10−6

Tensile Modulus (MPa) 206000
Shear Modulus (MPa) 79300

Density (Kg/m3) 8253

Table 1: The Physical Parameters of a RRR flexible manipulator.
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Figure 6: Deformation of flexible manipulator endeffector with respect to rigid manipulator endeffector motion in
X-direction.

Figure 7: Deformation of flexible manipulator endeffector with respect to rigid manipulator endeffector motion in
Y-direction.

Figure 8: Deformation of flexible manipulator endeffector with respect to rigid manipulator endeffector motion in
Z-direction.
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Figure 9: Deformations of flexible manipulator joint θ1 with respect to rigid manipulator joint motion.

Figure 10: Deformations of flexible manipulator joint θ2 with respect to rigid manipulator joint motion.

Figure 11: Deformations of flexible manipulator joint θ3 with respect to rigid manipulator joint motion.
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5 Conclusions

The light weight manipulators have many advantages over rigid manipulators. However,
the low stiffness of links and in some cases the transmission systems at manipulator joints can
introduce flexibility in the light weight manipulators. The effect of link and joint flexibility on
manipulator dynamics is studied using a spatial RRR manipulator. The numerical simulation
of different cases considering rigid links and rigid joints, flexible links and rigid joints, flexible
links and flexible joints is performed. The simulation results show significant effect of flexibility
on the overall manipulator motion. An accurate dynamic model that incorporates both link and
joint flexibility is mandatory for model based control design. A general purpose algorithm
that allows to obtain an accurate dynamic model of spatial manipulators that includes both link
and joint flexibility is developed. The algorithm is developed using the principle of virtual
work along with finite element method, and recursive kinematic formulation. The advantage
of general purpose algorithm is that it uses minimum set of equations that define the dynamics
of flexible manipulator, which is necessary for control design to reduce computational cost. In
addition, it also allows the dynamic modeling of any arbitrary manipulator configuration with
revolute joints.
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